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Abstract: The Mar Menor coastal lagoon in southeastern Spain has experienced a decline in water
quality due to increased nutrient input, leading to the eutrophication of the lagoon and the occurrence
of microalgal and macroalgal blooms. This study analyzes the macroalgal bloom that occurred in
the lagoon during the spring-summer of 2022. A set of machine learning techniques are applied to
Sentinel-2 satellite imagery in order to obtain indicators of the presence of macroalgae in specific
locations within the lagoon. This is supported by in situ observations of the blooming process in
different areas of the Mar Menor. Our methodology successfully identifies the macroalgal bloom
locations (accuracies above 98%, and Matthew’s Correlation Coefficients above 78% in all cases),
and provides a probabilistic approach to understand the likelihood of occurrence of this event in
given pixels. The analysis also identifies the key parameters contributing to the classification of pixels
as algae, which could be used to develop future algorithms for detecting macroalgal blooms. This
information can be used by environmental managers to implement early warning and mitigation
strategies to prevent water quality deterioration in the lagoon. The usefulness of satellite observations
for ecological and crisis management at local and regional scales is also highlighted.

Keywords: Mar Menor coastal lagoon; Copernicus program; macroalgal bloom; K-Means; CART;
machine learning

1. Introduction

The Mar Menor coastal lagoon is the largest hypersaline lagoon in Europe (Figure 1).
This lagoon covers an area of 170 km2 and a perimeter of 59.51 km. It has a mean depth of
3.6 m and a maximum depth of 6 m [1]. “La Manga”, a 22 km long and 100–900 m wide
sandbar, acts as a barrier between the lagoon and the Mediterranean Sea. On the one hand,
this barrier is crossed by five inlets called golas that determine the water exchange with the
Mediterranean Sea. The opening of these channels caused the major changes recorded for
the lagoon dynamics [1]. On the other hand, in the western part of the lagoon, there are
several wadis that contribute water and materials from agricultural and mining run-off
and with high nutrient load, mainly the Albujón watercourse, which is the only permanent
wadi in the area [1–3]. Evaporation exceeds rainfall and run-off and, therefore, the salinity
normally ranges from 41 to 46. Most of the watercourses discharge in the southern half of
the lagoon, depending on the sporadic and torrential rainfall regime, which occurred in the
autumn of 2019 during one of the most extreme storm events in the area [4].

The Mar Menor is a place of vital natural importance where up to 10 approved
environmental protection figures and other catalogs of geological and ecosystem interest
come together. For example, it is a protected area under Natura 2000 “MAR MENOR”,
classified as a Special Conservation Zone and Special Protection Area (SPA) for Birds
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(ZEPA). Within the SPA is the Protected Landscape “Open Spaces and Mar Menor Islands”.
In addition, the Mar Menor is a Wetland of International Importance (HII), in accordance
with the Convention on Wetlands of International Importance (Ramsar Convention), and is
a Specially Protected Area of Mediterranean Importance (SPAMI), in the list of the Barcelone
Convention. The Mar Menor and its associated wetlands are also a Wildlife Protection
Area (Law 7/1995, 21 April). Despite the natural importance of the Mar Menor lagoon
and its surroundings, during recent decades, the severe degradation of the lagoon has
mainly been caused by the eutrophication process due to the excess of nutrients coming
from the surrounding agriculture practices [2], and references therein. This has caused
a degradation of the lagoon during several periods (summer of 2015 and early 2016) [5].
This degradation has been aggravated by the high levels of nutrients and sediments in the
runoff caused by the intense storm called “cold drop”, which had catastrophic impacts
on this area in the second week of September 2019 [4]. The event caused an increment in
nitrate concentrations of about 13 mg/m3, one hundred times above normal values [2].
This massive input of nutrients together with the load that was already supporting the
lagoon resulted in a “green soup” and the consequent anoxia process, causing the system
to collapse [2]. This event, together with the phytoplanktonic bloom that occurred during
August 2021 up to a chlorophyll concentration of 20 mg/m3 in some areas, caused massive
mortality of several species inhabiting the lagoon, mainly fishes [6].

Figure 1. Map of the Iberian Peninsula. The red box delimits the Mar Menor coastal lagoon. In situ
locations (including photographs) where macroalgae were observed by the research team on different
dates from 2020 to 2022. RGB composite images (true color image Level 2A, 10 m spatial resolution)
corresponding to (A) 24 February, (B) 25 April, (C) 10 May, and (D) 25 May 2022 are shown.

The eutrophication processes and the system collapse also resulted in increased media
attention and the different administrations and public authorities with competencies in the
management of the lagoon have been developing initiatives to try to solve the problem. The
Regional Government maintains a network for monitoring variables related to water qual-
ity, such as temperature, salinity, chlorophyll, turbidity, water clarity, and dissolved oxygen.
These processed data are open-access and available online (https://marmenor.upct.es/,
accessed on 1 September 2022). However, these data are spatially scarce and, therefore,

https://marmenor.upct.es/
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there is a lack of spatial distribution. The lagoon average chlorophyll data from U.P. Carta-
gena in 2022 (https://marmenor.upct.es/, accessed on 1 September 2022) has been used as
general guidance in this study. Remote sensing images can be a powerful complementary
tool for coastal managers to be able to monitor the water quality of the lagoon in a synoptic
way and quasi-real-time. In fact, there are very recent studies that used remote sensing
techniques to monitor the water quality inside the lagoon [4,5,7–10]. During 2022, the
Mar Menor lagoon experienced an intense proliferation of macroalgae blooms in several
parts of the lagoon (these blooms are called “ovas” by the local population, Figure 1)
in response to the high nutrient input. The predominant species, Chaetomorpha linum
(O.F. Müller) Kützing 1845, has been part of the ecosystem since several years ago, but
its extension was limited to some shoreline areas of the Mar Menor. However, in 2022,
more than 17,000 Tons of this macroalgae were removed from the lagoon in 8 months
(Murcia Regional Government and Mar Menor Fishermen’s Guild communication). This
represents an amount ten times higher than what was removed in the previous four years
(1600–1700 Tons per year). These macroalgae usually grow in the presence of high concen-
trations of nutrients, so their removal from the lagoon helps to reduce the concentration
of these nutrients. They also grow in calm shallow and protected areas, with high salinity
and temperature in the presence of seagrass meadows [11], especially in the northern areas
of the lagoon (https://canalmarmenor.carm.es/inventario-ecologico/flora/alga-valonia-
valonia-utricularis-2/, accessed on 1 September 2022). Another problem caused by the
proliferation of macroalgae is that they prevent fishing as they adhere to the fishing nets,
which represents a great economic loss for the fishermen.

Several remote sensing approaches were recently carried out to monitor the algal
bloom distribution over coastal regions [12–16]. In addition, remote sensing approaches
have been developed during recent decades to monitor the water quality in inland and
coastal waters [17,18]. Many studies have used images from the Sentinel-2 satellite. This
satellite is an Earth Observation mission by the European Union’s Copernicus Program
that systematically acquires optical imagery at high spatial resolution. The mission is a
constellation of two twin satellites launched in June 2015 (Sentinel-2A) and March 2017
(Sentinel-2B). The temporal resolution of this mission is five days at the equator and it
includes 13 bands in the visible, near-infrared, and shortwave infrared parts of the spectrum.
The spatial resolutions of these bands are 10, 20, and 60 m. Recently, images from this
satellite processed using ACOLITE atmospheric correction were used for the quantification
of sediments inside the lagoon following an extreme storm in September 2019 [4]; the
process of downloading and processing these images was completed in several hours per
tile. Each Sentinel-2 image cropped around the lagoon is several gigabytes in size and
contains more than 1.5 million pixels.

Therefore, the aim of the present study is to develop a useful tool to localize in near-
real-time the areas where these macroalgae accumulate. This is important to advise local
and national administrations to remove the algae, avoiding further degradation of the
ecosystem and allowing society to make use of its assets, such as leisure activities or fishing.
The paper contains a first Section 2, which describes the in situ information used in this
study, satellite data and processing, as well as the different machine learning techniques
applied. The Section 3 is split into chlorophyll analysis, clustering (using the k-means
algorithm) and classification results (using Classification and Regression Trees), SHapley
Additive exPlanations (SHAP) values for algorithm explainability, and probabilistic analysis
as a tool for environmental management and future predictions. Finally, some conclusions
are presented.

2. Materials and Methods
2.1. In Situ Information

The in situ locations of the macroalgal bloom are presented in Figure 1. In situ data
were used to verify and validate the measurement of the remote sensing data collected.
Macroalgal blooms were identified visually either by walking along the Mar Menor shore-

https://marmenor.upct.es/
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line or using a pneumatic boat to explore the inner lagoon areas during three sampling
campaigns carried out in July 2021, February 2022, and May 2022 (Table 1). The areas
of macroalgae occurrence were geopositioned using a handheld GPS (Garmin Oregon
450T). Moreover, members of the Mar Menor Fishermen’s Guild as well as the Mar Menor
authorities also provided the research team with information about the location of the
macroalgae accumulation and the areas of removal on different dates (Figure 1), during
face-to-face meetings carried out in 2022. Finally, more information was collected from the
written press detailing the days and areas of macroalgae visualizations.

Table 1. Summary of the in situ data with the date and the location of the macroalgae blooms.

Date Latitude (N) Longitude Source

3 February 2020 37.818518 −0.780308 Newspapers
14 February 2020 37.818518 −0.780308 Newspapers

25 May 2020 37.818518 −0.780308 Fishermen
2 April 2020 37.818518 −0.780308 Newspapers

19 April 2020 37.818518 −0.780308 Fishermen
5 July 2021 37.692149 −0.835999 Sampling campaign

27 February 2022 37.653302 −0.787118 Sampling campaign
23 April 2022 37.695776 −0.749627 Fishermen
23 April 2022 37.686675 −0.746365 Newspapers
3 May 2022 37.676429 −0.824669 Sampling campaign

11 May 2022 37.712459 −0.7555 Sampling campaign
16 May 2022 37.645719 −0.766202 Sampling campaign
19 May 2022 37.693689 −0.746672 Sampling campaign
23 May 2022 37.642472 −0.746724 Sampling campaign
25 May 2022 37.652301 −0.786721 Sampling campaign
25 May 2022 37.650738 −0.781142 Sampling campaign
25 May 2022 37.692027 −0.835934 Sampling campaign
25 May 2022 37.634358 −0.730684 Sampling campaign

2.2. Sentinel-2 Satellite Data Preprocessing

Sentinel-2 imagery covering the Mar Menor lagoon on 25 April, 10 and 25 May, and 4
June 2022 was downloaded (https://scihub.copernicus.eu/, accessed on 1 September 2022)
and processed. The preprocessing of the satellite imagery followed the same procedure
as used by Caballero et al. [10]. The initial imagery was Top of Atmosphere (TOA) Level
1C, radiometrically and geometrically corrected. Bottom-of-Atmosphere (BOA) images
were produced using ACOLITE, a very common atmospheric correction software. Sunglint
correction was then performed on the images. Different products for biogeochemical
monitoring were produced from the imagery, including OC3, chl_mishra, and Normalized
Difference Chlorophyll Index (NDCI). OC3 is a band ratio algorithm that allows the esti-
mation of seawater concentrations of chlorophyll-a using three bands near the blue, green,
and red [19]. NDCI allows mapping of chlorophyll-a (chl_mishra) in estuarine and coastal
turbid waters [20]. It is advantageous compared to the previous indices, as it provides a
normalized estimate of chlorophyll and is particularly important for detecting algal blooms
where ground truth data are not available for qualitative studies. OC3, chl_mishra, and
NDCI are computed for every pixel of the images and used as additional bands during the
machine learning algorithm training.

2.3. Machine Learning Algorithms

A set of different machine learning algorithms have been applied to the satellite data,
taking into account the in situ information. The ultimate goal is to automatically detect
the macroalgal bloom using only satellite information, and the in situ data are used to
train these algorithms. Figure 2 presents a flow diagram of the algorithm as a visual
explanation of the pseudocode. As mentioned in previous sections, obtaining accurate
in situ information about the location of macroalgal blooms is a difficult process, and

https://scihub.copernicus.eu/
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we only have general guidance on areas where the bloom appeared (rather than specific
coordinates). However, in order to obtain an accurate algorithm to classify the pixels of a
satellite image as an algal bloom, a large dataset of accurate locations is needed. In order to
bridge this gap, we applied a two-step approach: first, using an unsupervised algorithm
over the satellite imagery to cluster the water pixels. The clustering exercise is fed back
to an expert on in situ locations of algal blooms, who identifies which one of the clusters
identified by the algorithm is a good match for the algal bloom. This information is taken
into account and the algorithm is re-run until a suitable cluster is found that represents the
algal blooms. The clusters do not provide information on what characteristics bring them
together, but they are a useful starting point for investigating commonalities in different
areas of the same water body. This is a key first step before applying a classification
algorithm, which then proceeds to the introduction of explainability algorithms (SHAP
values, as presented in the following sections) to understand what characteristics are key
for identifying algal blooms.

Figure 2. Flow diagram of the algorithm pseudocode.

Each pixel of the image used for the clustering analysis contains 16 layers of informa-
tion: the 13 Sentinel-2 surface reflectance bands, and three chlorophyll and algal indices
(OC3, chl_mishra, and NDCI). After the clustering analysis, we added the cluster infor-
mation as an extra layer (1 = algal bloom, 0 = no algal bloom). This represents the new
synthetic in situ dataset that was used in the next step. In order to avoid overfitting, and
to ensure robustness, only 5000 random pixels were extracted from each image to train
the classification algorithm. This represents about 0.3% of the total amount of pixels of
each image. Those 5000 pixels were subsequently used to classify the image, applying a
supervised algorithm. This means both input and “real” outputs must be provided to the
algorithm. The algorithm then looks for relationships between inputs and outputs that are
generalizable to the rest of the image (99.7% of pixels not used). In this case, the outputs
are the 0–1 clustering label (with 0 being “no macroalgae”, or no algal bloom present, and 1
being “macroalgae” or algal bloom present in that pixel). The result is a classification that
provides both an indication of the presence of algal bloom in each pixel and its likelihood
in terms of probability. This is generalizable to pixels not seen by the algorithm, and also
useful for extracting information on input importance via SHapley Additive exPlanations
(SHAP) values, as described in subsequent sections. The aim of developing a classification
algorithm that can be explained is, on the one hand, the possibility to apply this to future
images as a tool for the management of the lagoon and, on the other hand, as a tool for other
semi-analytical algorithms that are not based on machine learning. Details of the algorithms
tested are provided in the following sections. The code for this project was developed
in Python, using the algorithms provided by the University of Waikato’s WEKA project
(https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf, accessed on 1
September 2022) via Google Earth Engine [21] locally. The WEKA project is a collection

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
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of machine learning algorithms for data mining tasks, providing different tools for data
processing, exploration, and visualization. Google Earth Engine, which includes the tools
provided by WEKA, is a geospatial platform that provides a comprehensive catalog of
satellite imagery and different analysis techniques using the supercomputing facilities
provided by Google.

2.3.1. Clustering

The main algorithms that were tested in this case were K-Means and Cascade simple
K-Means. K-Means is a well-known and stable clustering algorithm, first developed by
Lloyd in 1982 [22]. “K” represents the number of clusters we are looking for, and it relates
to the number of centroids in the data. These centroids can be physical locations or related
to probabilistic measures of similarity between information in different pixels. Each point
in the image is associated with a cluster, with the goal of minimizing the Euclid distance of
the pixel data. The algorithm will then identify the “K” number of clusters by keeping the
centroids as far apart from each other as possible. The downside of this method is that as
the number of clusters is provided by the user, the process of finding the optimal number
of clusters becomes iterative and may be subject to errors. The Cascade Simple K-Means
algorithm was created to overcome this issue. In this case, the algorithm automatically
selects the optimal number of clusters based on the Calinski–Harabasz criterion (or variance
ratio criterion, VRC): well-defined clusters will present large between-cluster variance and
small within-cluster variance. The optimal number of clusters corresponds to the solution
with the highest Calinski–Harabasz index value [23]. This algorithm found that the optimal
number of clusters in every case was always 9.

2.3.2. Classification

Both Support Vector Machine (SVM) and Classification and Regression Tree (CART)
were tested on the data. The SVM provided consistently poorer results than the CART, and,
thus, this last one was selected. A CART is a predictive model that explains how certain
variables can be predicted based on other values [24]. These can be used both for regression
and classification problems, although in this paper, they were used for classification. The
working principle behind a CART is simple but powerful: a binary tree. Each root node
in the tree represents an input variable and a split point on that variable if the variable
is numeric. The leaf nodes contain the output variables, which are the target that we are
aiming to achieve with our prediction. The CART will choose optimal splitting points so
that a suitable tree is constructed to be able to predict outputs from inputs.

2.3.3. Evaluation Metrics

A set of metrics are used to evaluate the result of the classification exercise. In the equa-
tions below, TP is True Positive—actual positives that are correctly predicted; TN is True
Negative—actual negatives that are correctly predicted; FP is False Positive—actual nega-
tives that are wrongly predicted as positives; FN is False Negative—actual positives that
are wrongly predicted as negatives. “Positive” in this paper represents the “macroalgae”
class, while the “no macroalgae” class is “Negative”.

Accuracy: represents the ratio between correctly predicted instances and all instances
in the predicted dataset.

acc = (TP + TN)/(TP + TN + FP + FN)

The accuracy on its own is not a complete performance indicator of the classification,
as it fails to provide fair estimates in class-unbalanced datasets, i.e., if one class has much
more data than another class [25]. As we have much fewer data in the “macroalgae” class,
we decided to include the following metrics for further checks of the goodness of fit of our
algorithm.

Matthews Correlation Coefficient (MCC): This is a contingency matrix method to
calculate the Pearson product-moment correlation coefficient between actual and predicted
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values [26]. The MCC is only high if the predictor is able to correctly predict the majority of
positive data instances and the majority of negative data instances [27].

MCC = (TP .TN − FP .FN)/
√

((TP + FP).(TP + FN) .(TN + FP) .(TN + FN))

Confusion matrix: The confusion matrix allows visualization of the performance of
an algorithm, or the ways in which the classification model is “confused” when it makes
predictions. It provides insight not only into the errors being made by the classifier but,
more importantly, the types of errors that are being made. Each row of the matrix represents
the instances in an actual class while each column represents the instances in a predicted
class, or vice versa, distinguishing the number of True Positives, True Negatives, False
Positives, and False Negatives [28].

3. Results and Discussion
3.1. Chlorophyll Analysis in Areas of Interest

Chlorophyll estimates were obtained using OC3, as described in previous sections,
and used as guidance to see if the areas indicating high chlorophyll concentration matched
areas where macroalgae were observed during in situ campaigns. Figure 3 presents an OC3
chlorophyll map from 10 May 2022, together with extracted transects in areas of interest.
The color legend in this figure was set to a minimum of 1.7 mg/m3. This was the average in
situ value recorded on that day in the lagoon [29]. However, based on satellite data and the
OC3 algorithm, the average value in the lagoon that day was 2.27 mg/m3, and the median
value was 2.52 mg/m3. On the one hand, this could be due to the presence of macroalgae
not being recorded by the in situ measurements of chlorophyll. On the other hand, the OC3
algorithm may be identifying the color change provided by the presence of macroalgae
as chlorophyll. Most of the minimum values observed from OC3 are above the average
in situ value.

The values provided by OC3 show areas with a very high concentration of chlorophyll.
Three transects were measured in some of these areas: a northwest transect parallel to the
coast of Los Alcázares; an east transect parallel to the coast of La Manga; a south transect
parallel to the coast east of playa Honda (Figure 3). Specific chlorophyll values were plotted
for these areas. In all three cases, there is a minimum concentration above 3 mg/m3, and
the maximum concentrations are well above 7 mg/m3, reaching, in some cases, values of
12 mg/m3 in the east transect. These plots coincide with areas where macroalgae were
observed by locals and during in situ campaigns. Considering that the minimum values in
these areas are well above the average in situ value measured on that day in the lagoon, it
can be concluded that these concentrations are directly linked to the presence of macroalgae.
This result is useful in the following sections, as it demonstrates that OC3 can be used as
guidance for cluster estimation.

3.2. Clustering

Considering the atmospherically corrected Sentinel-2 data, as presented in previous
sections, and the different chlorophyll algorithms applied to each image, we then proceeded
to apply a clustering algorithm. A Cascade Simple K-means algorithm was applied to
different images to extract the optimal number of clusters that represent areas with maxi-
mum differences between them. At the same time, each cluster is composed of pixels that
share the maximum amount of similarities. The algorithm selected 9 clusters as the optimal
amount in every image. Combinations of bands were tested to check which grouping
produces clusters that could be good representations of the algal locations. Many different
combinations were tested, but here, we introduce the three combinations that are most
relevant to our discussion and that led to the optimal result. These are presented in Figure 4
for the image captured on 10 May 2022. The first combination included all Sentinel-2
spectral bands, OC3 and NDCI. The second combination included all Sentinel-2 spectral
bands, OC3, and chl_mishra. The third combination included all Sentinel-2 spectral bands,
OC3, NDCI, and chl_mishra.
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Figure 3. Map showing chlorophyll-a (mg/m3) from OC3 on 10 May 2022; the gradient goes from
1.7 mg/m3 (blue) to 7 mg/m3 (red). Transects are plotted in areas of interest. Top panel: Northwest
transect parallel to the coast of Los Alcázares. Middle panel: East transect parallel to the coast of La
Manga. Bottom panel: South transect parallel to the coast east of Playa Honda.

Figure 4. Clustering result in image from 10 May. Nine clusters selected as optimal number. The red
cluster represents macroalgae based on in situ expert information. Left panel: all spectral bands, OC3
and NDCI. Central panel: all spectral bands, OC3 and chl_mishra. Right panel: all spectral bands,
OC3, chl_mishra, and NDCI (this is the one selected to carry forward).
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The cluster that most likely represents the macroalgae has been depicted in red in
Figure 4. While the three combinations show similar clusters one to three and five to nine,
cluster four (the macroalgae cluster) slightly varies depending on the variables included in
the algorithm. For example, by not including chl_mishra (left panel), cluster four expands,
and by not including NDCI (central panel), the size of the potential algal cluster is reduced.
The option with all spectral bands, OC3, chl_mishra, and NDCI (right panel), was chosen
to be the most representative of the actual locations of algae, based on the effect of band
selection on the expected outcome, and how this matches the in situ experience.

As described in the methodology, these clusters are taken as a “synthetic in situ dataset”
representative of the macroalgae locations. In the next step, these clusters are isolated into
two types: “macroalgae” and “non-macroalgae” (all other clusters), and the information
on the cluster that each pixel belongs to is added as a band to the satellite image. Finally,
5000 pixels (about 0.3% of the initial dataset) are randomly selected. Please note that these
5000 pixels are randomly extracted from both the “macroalgae” and “non-macroalgae”
clusters, which means that, given the amount of “macroalgae” cluster present in each image,
most of the pixels belong to the “non-macroalgae” cluster. This is positive, as it makes the
classification exercise more complex and robust. These pixels constitute the training dataset
together with the multispectral information for the classification algorithm.

3.3. Classification

A CART is now applied to the dataset obtained from the previous section (atmospheri-
cally corrected Sentinel-2 multispectral bands, chlorophyll indices, and cluster information).
The classification exercise is applied to the images from 25 April, 10 May, and 25 May 2022
together, in order to increase the generalization capability of the resulting algorithm. The
CART is trained with 5000 pixels from each image at once, and then the results are tested
in unseen pixels of each image. The results of the classification algorithm are presented in
Figure 5, top panels. The results of the classification have to be tested on pixels that have
not been used to train the algorithm in order to assess its capability to produce accurate
estimates. The classification results in those pixels are compared with the clustering results
in the same pixels. Another new 5000 pixels per image are randomly selected for this part
of the exercise, which we call the test dataset. The different metrics presented in previous
sections are obtained for these pixels, i.e., accuracy, MCC, and confusion matrix. For the
training dataset, all these metrics are 1, demonstrating perfect performance.

For the test dataset, the results are presented in Figure 5, bottom panels. The results
show a constant accuracy of around 98%, while MCC ranges increase from 78% on 25 April
to 86% on 25 May 2022. As described in previous sections, considering that the classes in
this study are imbalanced (there are many more pixels in the no-macroalgae class than in
the macroalgae class), the MCC is a much more representative metric than the accuracy.
While the confusion matrix shows very consistent results for the model predictions for
the “no macroalgae” class, the “macroalgae” class true positives decrease with time (90%
for 25 April compared to 80% for 25 May). The results of the “no macroalgae” class are
not surprising, considering that most of the pixels used to train the CART belong to this
class, and, thus, the algorithm has much more information to draw a conclusion from.
Although the results are very good, the model is less capable of accurately predicting the
macroalgae class as time progresses. This could be due to the distribution of macroalgae
being less well-defined in the image of 10 May, and of much lesser extent in the image of
25 May compared to 25 April, where the clusters of macroalgae were evenly distributed
and well-defined. The use of these metrics helps us identify potential shortcomings of the
classification algorithm and areas of improvement. However, when comparing clusters
with classes with the naked eye, it is impossible to discern between them. This is reassuring
from the point of view of zonification of macroalgal blooms and supports the use of these
algorithms as a management tool for the lagoon.
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Figure 5. Top panels: classification results. 25 April 2022 (left), 10 May 2022 (center), 25 May 2022
(right). Pink: “macroalgae” class, blue: “no-macroalgae” class. Bottom panels: Confusion matrices
for test dataset on 5000 random pixels (not used for training) extracted from images on 25 April
2022 (left, accuracy = 0.98213, MCC score = 0.78551), 10 May 2022 (center, accuracy = 0.98406, MCC
score = 0.86200), and 25 May 2022 (right, accuracy = 0.98647, MCC score = 0.86796). The color bar
represents the percentage of pixels in a given category.

3.4. Algorithm Explainability: SHAP Values to Understand Input Relevance in Output

SHAP values are a method based on cooperative game theory and are used to increase
the transparency and interpretability of machine learning models [30]. This is a useful way
to increase the expandability of artificial intelligence models and obtain information about
what parameters are most representative of the overall outcome of the training exercise.
This methodology discloses the individual contribution of each input variable to the output
of the model for each observation. We can then extract useful statistics to understand
general trends. This is particularly useful for developing semi-analytical models based
on the outputs of machine learning. The SHAP values for the classification exercise are
presented in Figure 6. The panel on the left shows a summary distribution of all SHAP
values for all observations of the classification. This figure is very useful for understanding
the range of variation of each parameter weight, but also to see the type of correlation
(positive being red and negative being blue). The variables are ordered from most relevant
(top) to least relevant (bottom). It is interesting to observe that NDCI and chl_mishra [20]
are the most relevant inputs, ahead of any reflectance bands. Both present a positive
contribution to the output. The result makes sense, as these are both chlorophyll indicators
that already represent complex band relationships. NDCI is a normalized difference of the
bands at 708 (close to Sentinel-2 red edge band B5) and 665 nm (Sentinel-2 red band B4).
However, chl_mishra is a measure of chlorophyll, instead of an index. Therefore, NDCI
may be considered a more robust index to guide machine learning algorithms, considering
that it is normalized and within a given range, a fact that is useful for comparing different
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images. Blue, aerosols (coastal blue), red edge, green, SWIR1, and chlorophyll from OC3
are the next most representative parameters. It is interesting to note that several spectral
bands are more relevant for the results than OC3 chlorophyll. This is most likely because
NDCI provides a good indicator that overcomes any potential improvement by OC3. Given
the nature of the situation in the lagoon, NDCI also seems more relevant as it was initially
developed for turbid waters. The panel on the right shows the mean SHAP values for all
observations (that is, the mean of the distribution shown in the left panel). We can see how
the influence of NDCI, chl_mishra, and B2 (band blue) is more significant than those of
other variables.

Figure 6. Summary SHapley Additive exPlanations (SHAP) values (left) and mean of absolute SHAP
values (right).

3.5. Probability of a Macroalgal Bloom

The classification carried out in previous sections can be approached from a proba-
bilistic point of view. In this case, instead of obtaining a binary classification as the outcome
of the model, we obtain a set of probabilities ranging from 0 (total certainty that it is “no
macroalgae” class) to 1 (total certainty that it is “macroalgae” class). In the classification
algorithm, the values are normally approximated to the closest binary values for simplifi-
cation (as, in many situations, the user is only interested in the class that a given pixel is
closest to). However, the classifier output can be specified to provide probabilistic values
instead. The gradient values between 0 and 1 provide an estimation of how close a pixel is
to a given class, or what the probability is of a pixel being algae or not. These probabilities
are useful for better understanding the limitations of the machine learning algorithm, but
also provide certainty on the values that definitely belong to a given class. The results
of this exercise are presented in Figure 7, where purple represents probability = 0 (“no
macroalgae” class) and red represents probability = 1 (macroalgae class) on the image of
25 April 2022. Three areas of interest have been highlighted for further discussion. In those
areas, we can see how some pixels show colors in between the purple-red maximum range,
representing a degree of uncertainty in the mapping of the class that the pixels belong to.

It is of particular relevance to highlight the results presented in the right panel in
Figure 7: there are a couple of straight lines that expand from the top to the bottom of
the image. These striping effects are linked to the presence of scan lines in the original
Sentinel-2 image due to the parallax effect between odd and even detectors (different
detector footprints acquired from slightly different viewing angles). Therefore, these are
anomalies in the image, and they present a good opportunity to check the performance of
the algorithm. The probability in the lines is around 0.2, demonstrating that the algorithm
has identified that the characteristics in those pixels are not equal to those in water, but
they are definitely not algae. This type of result provides confidence when judging the
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capabilities of the algorithm, and it is of particular interest when thinking of management
strategies and zonification. Environmental managers can use probability maps to focus on
areas where the presence of macroalgae is more certain in order to concentrate mitigation
and removal strategies.

Figure 7. Probability of classification on 25 April 2022. Probability is used as an indicator of confidence
on the prediction made by the classification algorithm presented in the previous section. The
probability color scale ranges from 0 in purple (“no macroalgae” class) to 1 in red (“macroalgae” class).

3.6. Prediction of Future Macroalgal Blooms

As a final test, the algorithm was evaluated on images that were not previously used
for training. In this case, an image from 4 June 2022 was provided, only using the patterns
learned from the images in April and May, as discussed previously in the paper. Without
any other information from the test image in June, the algorithm performed poorly, not
being able to provide accurate results. In order to evaluate the ability of the algorithm, we
decided to provide a minimal amount of information from the image in June, as specified
in the table in Figure 8: a certain number of pixels from the new image were provided to
capture the reflectance conditions on the day. One of the issues present when training the
algorithm with the proposed methodology is that only a small amount of information about
algae is provided, as the process is randomized. This means most of the data provided
comes from the “no macroalgae” or water class.

Figure 8 presents the results of this exercise. In particular, the panel on the left shows
the original clusters, while the panel in the center and right show the performance of the
classification algorithm including 47 pixels from the unseen image from June (center) and
244 pixels (right). Of those 47 and 244 pixels, only 2 and 12 represent the macroalgae,
respectively. It is clear that by providing just 2 algae locations to the algorithm, we reach a
likelihood of about 50% of accuracy in the estimation. However, by including the slightly
larger number of algal pixels, i.e., 12, we reach an 85% likelihood of determining the algal
bloom correctly. Moreover, the right panel shows how a zonification can be accurate enough
to have a good estimate of the macroalgal locations, i.e., when giving the algorithm between
2 and 12 algae locations. This can be easily carried out by recording in situ observations
prior to evaluating the algorithm on the new satellite image.
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Figure 8. “Macroalgae-no macroalgae” original clusters on 4 June 2022 (left panel, highlighted);
results of classification on image from 4 June 2022 including 47 random points from new image in
training (center panel); results of classification on image from 4 June 2022 including 244 random
points from new image in training (right panel). Bottom: summary of metrics for 4 June 2022 image
as evaluation image, including a given number of pixels from that image together with 5000 pixels
from each of the images from 25 April 2022, 10 May 2022, and 25 May 2022. “True negatives” and
“False positives” are above 0.99 and below 0.01, respectively, in all cases and have not been included
in the table.

In summary, the performance of the algorithm in images previously unknown to it
needs a baseline that determines the reflectance conditions on the day in order to tune
the results accurately. Although to start with, we rely on having a minimal amount of in
situ feedback to perform accurate estimates with this methodology, it is important to note
that only three images have been used for this analysis, providing a very limited pool for
the machine learning techniques to learn about the field. The more information that is
provided to the algorithm, the lower the dependency on in situ observations. This is a very
important point for future research in the area: the more information that is recorded about
the presence of macroalgal blooms, the better this type of automatic detection technique
can be tuned, helping create a database of conditions throughout the year that will help
future predictions be less reliant on in situ observation, thus reducing management costs.
Sentinel-2 satellites can certainly record the reflectance spectra that contain the scattering,
absorption, and fluorescence signatures of algal blooms near the ocean surface [12–16,31],
providing a 5-day revisit at the Equator (improved for higher latitudes) of global coastal
zones.

4. Conclusions

This study demonstrates that the combined use of Sentinel-2 satellite imagery, Artificial
Intelligence, and Machine Learning provided a robust tool for near-real-time detection of
the appearance of macroalgae blooms in the Mar Menor coastal lagoon. The methodology
can be used in near-real-time as an early warning system during future events. It facilitates
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the work of the competent administrations to remove macroalgae with directed and non-
random activities, as well as saving time and costs of monitoring vessels. In 2022, more
than 17,000 Tons of this macroalgae were removed from the lagoon over 8 months. The
strategy is beneficial for multiple socioeconomic sectors, such as tourism (by removing the
macroalgae early on, it gives a better image of the beaches and the water of the lagoon)
or fishing (the removal of the macroalgae prevents the fishing nets from collapsing and
allows fishermen to carry out their work). In addition, it has been shown that macroalgae
absorb large amounts of nutrients, such as nitrates and phosphates, which harm the lagoon,
so their removal implies the elimination of a large amount of these elements from the
waters. The current methodology can be easily transferred to other coastal regions with
similar environmental issues. These guidelines target coastal managers in government and
scientific researchers, for translating satellite remote sensing into information and tools that
are useful for monitoring eutrophication and macroalgal blooms, which represents one of
the most severe and widespread coastal environmental problems related to climate change.
The encouraging values added by the satellite products in terms of synoptic observations
and frequency are of paramount significance for ecological and crisis management purposes
at local and regional scales. However, more information is required in order to define the
optimal automatic detection techniques, helping create a database of conditions throughout
the year that will help future predictions be less reliant on in situ observation, reducing
management costs.
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